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Abstract 

The objective of the present paper is to study real hyper surfaces of a complex 
projective space with generalized recurrent second fundamental tensor and it is 
shown that such type real hyper surface exist. Also, we study real hyper 
surfaces of a complex projective space with generalized recurrent Ricci tensor. It 
is proved that a real hyper surfaces of complex projective space is generalized 
Ricci recurrent. 

1. Introduction 

A Riemannian manifold of constant sectional curvature is called real 
space form. A complex n-dimensional Kähler manifold of constant 
holomorphic sectional curvature c is called a complex space form. A 
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complete and simply connected complex space form is a complex 

Euclidean space ,nC  if ,0=c  a complex projective space ,nCP  if 0>c  

or a complex hyperbolic space ,nCH  if .0<c  

Let 2, ≥nCPn  be an n-dimensional complex projective space with 

Fubini-Study metric of constant holomorphic sectional curvature 4 and 

let M be a real hyper surface of .nCP  Then M has an almost contact 

metric structure ( )g,,, ηξφ  induced from the Kähler structure of .nCP  

Many differential geometers have been studied real hypersurfaces of a 
complex projective space such as Bejancu and Deshmukh [1], Cecil and 
Ryan [2], Cho and Ki [4], Deshmukh [5], Hamada [8, 9, 10], Ikuta [13], 
Kimura [15, 16, 17, 18], Kimura and Maeda [19], Maeda [21, 22], Maeda 
[23], Matsuyama [24], [25], [26], Niebergall and Ryan [27], Okumura 
[28], Perez et al. [30, 31, 32, 33], Takagi [35, 36, 37], Wang [38] and 
others. 

It is well known that there does not exist a real hyper surface M of 
nCP  satisfying the condition that the second fundamental tensor A of M 

is parallel. Again in [9], Hamada used the condition that the second 
fundamental tensor A is recurrent, i.e., there exists an 1-form α  such 
that .α⊗=∇ AA  And Hamada [9] proved that there are no real hyper 
surfaces of a complex projective space with recurrent second fundamental 
tensor. In this connection, it is mentioned that Hui and Matsuyama [11] 
studied real hyper surfaces of a complex projective space with pseudo 
parallel second fundamental tensor. Also, Hui and Matsuyama [12] 
studied pseudo Ricci symmetric real hyper surfaces of a complex 
projective space. 
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Motivated by the above studies, the present paper deals with the 
study of real hyper surfaces of a complex projective space with 
generalized recurrent second fundamental tensor. In this paper, we 
consider the condition that the second fundamental tensor is generalized 
recurrent, i.e., there exists two 1-forms α  and β  such that 

( ) ( ) ( ) ,YXAYXYAX β+α=∇  (1.1) 

where ρ  and σ  are vector fields associated to the 1-forms α  and β  such 

that ( ) ( )ρ=α ,XgX  and ( ) ( )., σ=β XgX  The paper is organized as 

follows. Section 2 is concerned with some preliminaries. Section 3 is 
devoted to the study of real hyper surfaces of a complex projective space 
with generalized recurrent second fundamental tensor. In [9], Hamada 
proved that there are no real hyper surfaces of a complex projective space 
with recurrent second fundamental tensor. However, in this paper, we 
obtain that the associated 1-forms of real hyper surfaces of a complex 

projective space nCP  with generalized recurrent second fundamental 
tensor. 

A Riemannian space is said to be Ricci symmetric if its Ricci tensor    
S of type ( )2,0  satisfies ,0=∇S  where ∇  denotes the Riemannian 

connection. During the last five decades, the notion of Ricci symmetry 
has been weakened by many authors in several ways to a different extent 
such as Ricci-recurrent space [29], Ricci semisymmetric space [34], 
pseudo Ricci symmetric space by Deszcz [7], pseudo Ricci symmetric 
space by Chaki [3]. Generalizing the notion of Ricci-recurrent manifold, 
De et al. [6] introduced the notion of generalized Ricci-recurrent 
manifolds. A Riemannian manifold is called a generalized Ricci-recurrent 
[6] if its Ricci tensor S of type ( )2,0  satisfies the condition 

( ) ( ) ( ) ( ) ( ) ( ),,,, ZYgXZYSXZYSX β+α=∇   (1.2) 

where α  and β  are two non-vanishing 1-forms defined by ( ) ( ),, 1ρ=α XgX  

( ) ( )., 2ρ=β XgX  
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The relation (1.2) can be written as 

( ) ( ) ( ) ( ) ,YXQYXYQX β+α=∇   (1.3) 

where Q is the Ricci-operator, i.e., ( ) ( )YXSYQXg ,, =  for all ., YX  

Many differential geometers studied real hyper surfaces of complex 
projective space satisfying some condition of Ricci tensor. In [14], Ki 
proved that there are no real hyper surfaces of a complex projective space 

nCP  with parallel Ricci tensor. Again in [10], Hamada studied real hyper 
surfaces of a complex projective space with recurrent Ricci tensor and 
obtained that there are no real hypersurfaces of a complex projective 
space with recurrent Ricci tensor under the condition that ξ  is a 

principal curvature vector. Also, Loo [20] studied real hyper surfaces in a 
complex space form with recurrent Ricci tensor. 

Motivated by the above studies in the Section 4, we have studied the 
real hyper surface of a complex projective space with generalized 
recurrent Ricci tensor, i.e., the Ricci-operator Q satisfies the condition 
(1.3). Section 4 is devoted to the study of real hyper surfaces of a complex 
projective space with generalized recurrent Ricci tensor. It is proved that 
a real hyper surface of a complex projective space can be generalized 
Ricci recurrent. 

2. Preliminaries 

Let M be a real hyper surface of .2, ≥nCPn  In a neighbourhood of 

each point, we take a unit normal vector field N in .nCP  The 

Riemannian connections ∇~  in nCP  and ∇  in M are related by 

( ) ,,~ NYAXgYY XX +∇=∇   (2.1) 

,~ AXNX −=∇  (2.2) 

for arbitrary vector fields X and Y on M, where g is the Riemannian 

metric of M induced from the Fubini-Study metric G of nCP  and A is the 
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second fundamental tensor of M in .nCP  Let TM be the tangent bundle 
of M. An eigenvector X of the second fundamental tensor A is called a 
principal curvature vector. Also an eigenvalue λ  of A is called a principal 
curvature. It is known that M has an almost contact metric structure 

induced from the Kähler structure J on ,nCP  that is, we define a tensor 

field φ  of type (1,1), a vector field ξ  and an 1-form η  on M by 

( ) ( )YJXGYXg ,, =φ  and ( ) ( ) ( ).,, NJXGXXg =η=ξ  Then we have 

( ) ( ) ( ) .0,1,,2 =φξ=ξξ=ξηξη+−=φ gXXX   (2.3) 

Also it follows from (2.1) that 

( ) ( ) ( ) ,, ξ−η=φ∇ YAXgAXYYX   (2.4) 

.AXX φ=ξ∇   (2.5) 

Let R~  and R be the curvature tensors of nCP  and M, respectively. From 

the expression of the curvature tensor of ,nCP  the curvature tensor, 

Codazzi equation and the Ricci tensor of type (1,1) are given by 

( ) ( ) ( ) ( ) ( ) YZXgXZYgYZXgXZYgZYXR φφ−φφ+−= ,,,,,  

( ) ( ) ( ) ,,,,2 AYZAXgAXZAYgZZXg −+φφ−   (2.6) 

( ) ( ) ( ) ( ) ( ) ,,2 ξφ−φη−φη=∇−∇ YXgXYYXXAYA YX   (2.7) 

( ) ( ) ,312 2XAhAXXXnQX −+ξη−+=   (2.8) 

where h = trace A. 

Again we have 

( ) ( ) ( ) ( )AYXhAXYYAXgYQX +φη−ξφ−=∇ 3,3  

 ( ) ( ) ( ) .AYAYAAYAh XXX ∇−∇−∇+   (2.9) 

Also we recall the following: 
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Lemma 2.1 ([23]). If ξ  is a principal curvature vector, then the 

corresponding principal curvature a is locally constant. 

Lemma 2.2 ([23]). Assume that ξ  is a principal curvature vector and 

the corresponding principal curvature is a. If XAX λ=  for ,ξ⊥X  then 

we have ,λ=φXA  where ( )
( ) .2

2
a

a
−λ
+λ

=λ  

Theorem 2.1 ([2]). Let M be a connected real hyper surface of ,nCP  

,3≥n whose Ricci tensor S satisfies ( ) ( ) ( ) ( )YXbYXagYXS ηη+= ,,  for 

some smooth functions a and b on M. Then M is locally congruent to one of 
the following: 

(i) a geodesic hyper surface; 

(ii) a tube of radius r over a totally geodesic ,21, −≤≤ nCP kk  where 

20 π<< r  and ;1cot2
−−

=
k
k

nr  

(iii) a tube of radius r over a complex quadric ,1−nQ  where 40 π<< r  

and .22cot2 −= nr  

Theorem 2.2 ([35]). Let M be a homogeneous real hyper surface of 

.nCP  Then M is a tube of radius r over one of the following Kähler 
submanifolds: 

( )1A  hyperplane ,1−nCP  where ;20 π<< r  

( )2A  totally geodesic ( ),21, −≤≤ nCP kk  where ;20 π<< r  

(B) complex quadric ,1−nQ  where ;40 π<< r  

(C) ,2
1

1
−

×
n

CPCP  where 40 π<< r  and ( )5≥n  is odd; 
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(D) complex Grassman ,5,2cG  where 40 π<< r  and ;9=n  

(E) Hermitian symmetric space ( ) ( ),510 USO  where 40 π<< r  and 

.15=n  

Theorem 2.3 ([16]). Let M be a real hyper surface of .nCP  Then M 
has constant principal curvatures and ξ  is a principal curvature vector if 

and only if M is locally congruent to a homogeneous real hyper surface. 

3. Real Hypersurfaces of nCP  with Generalized 
Recurrent Second Fundamental Tensor 

In this section, we study real hyper surfaces of 2, ≥nCPn  with 

generalized recurrent second fundamental tensor and obtain the 
following: 

Theorem 3.1. In a real hyper surface of a complex projective space 

2, ≥nCPn  with generalized recurrent second fundamental tensor, the 

associated 1-forms α  and β  are given in (3.21). 

Proof. We now consider a complex projective space 2, ≥nCPn  with 

generalized recurrent second fundamental tensor, that is, a complex 

projective space nCP  whose second fundamental tensor satisfies the 
Equation (1.1). 

Let us take 

,bUaA +ξ=ξ   (3.1) 

for two functions a and b, where U is the unit tangent vector field 
orthogonal to ξ  on M. 
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So from (1.1) and (3.1), we have 

( )( ) ( ) ( ) ( ) ( )YgXYAgXYAg X ,,, ξβ+ξα=ξ∇    

( ) ( )[ ] ( ) ( ) ( ),, YUgXbYXXa α+ηβ+α=   (3.2) 

for any tangent vector fields X and Y on M. 

Again by virtue of (2.3), we have from (2.7) that 

( ) ( ) .XXAAX φ−∇=ξ∇ ξ   (3.3) 

Also from (1.1), we get 

( ) ( ) ( ) .XAXXA ξβ+ξα=∇ξ   (3.4) 

By virtue of (3.4), it follows from (3.3) that 

( )( ) ( ) ( ) ( ) ( ) ( ).,,,, YXgYXgYAXgYAg X φ−ξβ+ξα=ξ∇   (3.5) 

From (3.2) and (3.5), we have 

( ) ( ) ( ) ( ) ( )[ ] ( )YXXaYXgYAXg ηβ+α+φ=ξα ,,    

( ) ( ) ( ) ( ),,, YXgYUgXb ξβ−α+   (3.6) 

for arbitrary vector fields X and Y on M. 

Putting ξ=X  and UY =  in (3.6), we have 

( ) ( ) ( )., ξα=ξξα bUAg   (3.7) 

Similarly setting UX =  and ξ=Y  in (3.6), we get 

( ) ( ) ( ) ( )., UUaAUg β+α=ξξα   (3.8) 

Since the second fundamental tensor is symmetric, we get from (3.7) and 
(3.8) that 

( ) ( ) ( ).ξα=β+α bUUa   (3.9) 
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Again putting UYUX φ== ,  in (3.6), we obtain 

( ) ( ) ( ) .1,, =φφ=φξα UUgUAUg   (3.10) 

Similarly putting UYUX =φ= ,  in (3.6) and using (2.3), we have 

( ) ( ) ( ) .1, −φα=φξα UbUUAg   (3.11) 

From (3.10) and (3.11), we have 

( ) .2=φα Ub   (3.12) 

Also putting UYX φ==  in (3.6), we obtain 

( ) ( ) ( ),, ξβ−=φφξα UUAg   (3.13) 

which implies that 

( ) ( ) ( )., ξβ−=φφξα bUUAgb   (3.14) 

By virtue of (3.9), we have from (3.14) that 

( ) ( )[ ] ( ) ( ) .0, =ξβ+φφβ+α bUUAgUUa   (3.15) 

Now from (1.1), it follows that 

( ) ( ) ( ) ( )AUUUAUUAUA UU φα−φα=∇−φ∇ φ    

( ) ( ) .UUUU φβ−φβ+   (3.16) 

Also from Codazzi equation (2.7), we get 

( ) ( ) ,2ξ−=∇−φ∇ φ UAUA UU   (3.17) 

since U is the unit tangent vector field orthogonal to ξ  on M. Using 

(3.17) in (3.16), we get 

( ) ( ) ( ) ( ) ,2ξ−φβ+φβ−φα=φα UUUUAUUUAU  

which implies that 

( ) ( ) ( ) ( ) ( ).,, UUUAgUUAUgU β+φφα=φφα   (3.18) 
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In view of (3.10) and (3.14), (3.18) yields 

( ) ( ) ( ) ( ) ( ) ( ) .0as ≠ξααξβ−βξα=φα UUU   (3.19) 

From (3.12) and (3.19), we get 

( ) ( ) ( ) ( ) .2
bUU =αξβ−βξα   (3.20) 

From (3.9) and (3.20), we get 

( ) ( ){ }
( ) ( )[ ] ( ) ( ) ( )

( ) ( )[ ] ,2and2 222

ξβ+ξα
ξβξα+=β

ξβ+ξα
−ξα=α ab

baUab
bU   (3.21) 

for any tangent vector field orthogonal to .ξ  

4. Real Hypersurfaces of a Complex Projective Space 

 nCP  with Generalized Recurrent Ricci Tensor 

In this section, we have studied real hyper surfaces of a complex 

projective space 2, ≥nCPn  with generalized recurrent Ricci tensor and 

prove the following: 

Lemma 4.1. Let M be a connected real hyper surface of a complex 

projective space 2, ≥nCPn  with generalized recurrent Ricci tensor. If all 

eigenvalues of the Ricci operator Q are constant, then the Ricci tensor S of 
M is not parallel. 

Proof. Let λ  be an eigenvalue of the Ricci operator corresponding to 
the unit eigenvector Y. Then we have 

( )( ) ( ) ( )( ) ,,,, λ=∇−∇=∇ XYYQgYQYgYYQg XXX   (4.1) 

for any X on M. 
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Again we have from (1.3) that 

( )( ) ( ) ( ) ( ) ( )YYgXYQYgXYYQg X ,,, β+α=∇    

( ) ( ).XX β+λα=   (4.2) 

Since all the eigenvalues of Q are constant, we get from (4.1) and (4.2) 
that ( ) ( ) 0=β+λα XX  for all X on M. Consequently, the Ricci tensor S of 

M is not parallel. From (2.8) and since ξ  is principal, the principal 

curvature vector will also be eigenvectors of S. Thus Ricci tensor of a 
homogeneous real hyper surface has constant eigenvalues. Again, the 
hyper surface listed in Theorem 2.2 do not have parallel Ricci tensor. 
Thus from Lemma 4.1 and Theorem 2.3, we may state the following: 

Proposition 4.1. A homogeneous real hyper surface of 2, ≥nCPn  

can be generalized Ricci recurrent. 

So by using Theorem 2.1, we have 

Corollary 4.1. A real hyper surface of ,2, ≥nCP n  whose Ricci tensor 

S satisfies ( ) ( ) ( ) ( )YXbYXagYXS ηη+= ,,  for some smooth functions a 

and b on M, can be generalized Ricci recurrent. 

Now we prove the following: 

Theorem 4.1. A real hyper surface of a complex projective space 

,2, ≥nCP n  under the condition that ξ  is a principal curvature vector, is 

generalized Ricci recurrent. 

Proof. Let us take a real hyper surface of complex projective space 

2, ≥nCPn  with generalized recurrent Ricci tensor. Then by virtue of 

(2.8), it follows from (1.3) that 

( )( ) ( ) ( ) ( )[ ] ( )ZYgXXnZYQg X ,12, β+α+=∇    

( ) [ ( ) ( ) ( ) ( )].3,, 2 ZYZYAgZAYhgX ηη−−α+   (4.3) 
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Using (2.9) in (4.3), we get 

( ) ( ) ( )[ ] ( ) ( ) [ ( ) ( ) ( ) ( )]ZYZYAgZAYhgXZYgXXn ηη−−α+β+α+ 3,,,12 2  

( ) ( ) ( ) ( ) ( ) ( )ZAYgXhZAXgYYAXgZ ,,3,3 −φη+φη+  

( )( ) ( )( ) ( )( ) ,0,,, =∇+∇+∇− ZAYAgZYAAgZYAhg XXX   (4.4) 

for any tangent vectors .and,, ZYX  

Putting ξ=Y  and XZ φ=  in (4.4), we get 

( ) [ ( ) ( )] ( )XAXgXAgXAhgX ,3,, 2 +φξ−φξα   

( ) ( ) ( ) ( ) ( )( )XAhgXAgXhXAX X φξ∇−φξ−ηη− ,,3  

( )( ) ( )( ) .0,, =φξ∇+φξ∇+ XAAgXAAg XX   (4.5) 

Let us assume .ξ=ξ aA  Then by Lemma 2.1, we have a is constant and 

hence we get 

( ) .AXAAXaAX φ−φ=ξ∇   (4.6) 

Using (4.6) in (4.5), we obtain 

( ) ( )( ) ( )XAXhagXaXAXg φφ−η− ,3,3 2    

( ) ( ) ( ) ,0,,, 2 =φφ+φφ−φφ+ XAXgaXAAXAgXAXAhg   (4.7) 

for any tangent vector X on M. We choose X as a unit principal curvature 
vector orthogonal to ξ  and by virtue of Lemma 2.2, we have 

,and XXAXAX λ=φλ=  

where .2
2
a

a
−λ
+λ=λ  Therefore, we obtain 

[ ( )] .0322 =+−−λ−λλ haah   (4.8) 
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Again from Lemma 2.2, we may write 

.12 +λ+λ=λλ a   (4.9) 

If ,λ=λ  then (4.9) yields 

.12 +λ=λ a   (4.10) 

If 0 occurs as a principal curvature (for a principal vector orthogonal to ξ ), 

then (4.9) implies that all principal curvature must be constant. 

We now assuming that 0 is not a principal curvature (again we 
consider only directions orthogonal to ξ ), the relation (4.8) shows that 

there are at most two distinct principal curvatures. If λ  and λ  are 
distinct, then we have 

( ),3and 2 +−−=λλ=λ+λ haah  

which yields 

( ) ,1232 +=+−− hahaa  

i.e., 

.042
2 =+− haa  

Thus, the coefficients in (4.8) are constants and hence so are λ  and .λ  
The final possibility is that all principal curvatures (with principal 
vectors orthogonal to ξ ) satisfy (4.8) and are again constant. 

So by Theorem 2.3 and Proposition 4.1, we may conclude the desired 
result. 
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